
Aduct
Release 1.1.0

Jul 09, 2020

Contents:

1 Introduction 1
1.1 The Need . 1
1.2 A Solution . 2
1.3 To The Point . 2

2 Installation 3
2.1 Requirements . 3
2.2 Getting Aduct . 3
2.3 New to Gtk ? . 4

3 Overview 5
3.1 Aduct.Provider . 5
3.2 Aduct.Element . 6
3.3 Aduct.View . 7
3.4 Framing an Application . 7

4 Making an Application 9
4.1 Making Providers . 10
4.2 Designing the Application . 14

5 API Reference 21
5.1 Classes . 21
5.2 Functions . 29

6 Indices and tables 33

Python Module Index 35

Index 37

i

ii

CHAPTER 1

Introduction

Aduct is a toolkit to design graphical applications that can be dynamically changed with a little work as possible. It
is designed by inheriting objects provided by Gtk and thus by following principles of Aduct with Gtk, one can make
powerful applications that are easy for a developer to develop, third-party person to improve and end user to use.

1.1 The Need

Let us assume you make an amazing application. As its core developer, you design the interface in such a way that
it looks awesome to you. In other words, it has an interface that reflects your ideas on how a graphical user interface
should look. Apart from the code (which nobody cares when your application is closed-source), the where and how
widgets are arranged in the user interface is also important (which everybody cares except you).

After designing the application, naturally you get more comfortable with the interface, so it doesn’t look strange to
you in any way. But this isn’t the case with users. There are also certain challenges that you often need to overcome
after publishing or improving the application :

• You need to add a feature New features become a nightmare when it involves a lot of rewrites. The problem
with adding the new feature is the doubt if it will be accepted by users or whether they will work properly with
other parts of application.

• Allowing third-party plugins The developer of the plugin may not have the same thinking you do. Sometimes
by mistake, they completely spoil the working of your application. Also a plugin is not always cooperative with
other plugins. It may inhibit the working of other plugins.

• Impressing the users Unfortunately there is also a good chance that your users may be totally against the
interface of your application. For them, you need to have an interface that can be changed at their will. Some
applications may even have a different layout of interface for each file. So you need to make an application
whose interface can literally be saved and ported.

How can you tackle these hurdles? Let us try to describe the sudden solutions that comes to your mind.

For the first issue, the complexity depends on your code and interface. Depending on that, adding a new feature could
be simple as adding a few lines of code or a complete rewrite of your entire application. But what if you want a
solution that doesn’t depend on the complexity of your application?

1

http://www.gtk.org

Aduct, Release 1.1.0

The second issue can be avoided by dividing your application interface into loosely coupled parts. Then you allow the
plugins to affect only certain parts of the application. Mostly it is some panel situated at one edge of the application,
where the plugin gets its place. In other words, you place a restriction on the scope of a plugin, so that it doesn’t
interfere with other blocks of application. If a plugin wants a central representation in your application, how can you
achieve that? Can you design an approach that gives your plugin all the essential freedom?

The issue with users is the most important one to take care. To make an interface that can be easily changed by users
is the most irritating. Sorting out the requirements, checking whether a feature will be useful or not is also difficult to
resolve. For you, placing the toolbox at right seems plausible, but there could be a creepy user who wants it at bottom.
Possibilities exist. Saving the interface is another headache. Which widget was modified ?, which should be saved ?,
how to save ?, all questions makes you think.

There are more such issues which doesn’t go easy with a developer.

1.2 A Solution

Aduct can be used to kick-out the above mentioned issues. Some developers may be think that such issues can be
avoided by writing a few more lines of code. And yes, Aduct is such a package made with a few lines of code. It is
very small, but when you follow its approach, it saves your essential time and resources, which can be instead used in
improving other concepts of your application.

Aduct’s design principle is very simple. You make widgets that are independent of each other. Make a basic layout of
the interface, then sit back and relax, because Aduct now takes care of other requirements. We believe in “take care
of small things and big things will automatically be taken care”. It should not be hidden that at first you may have
trouble writing independent widgets, but once you are able to make one, then you hardly need to focus in its working
with interface.

1.3 To The Point

Aduct is inspired by Blender’s interface. Blender has such an awesome one where it is possible for a user to customize
it in any way they want. Aduct, which tries to mimic the behavior, is written in Python using Gtk. We will cover the
working and making of interfaces with Aduct later. For now, what you need to understand is that in Aduct, we have
two things that work together. A provider that can produce widgets and a view, that can hold and display them. Views
come with various tweaks, which just need to be enabled. When the requirements of both are satisfied, you get a good
interface that can suit all the use cases. The description so far may seem so absurd and you may not have even able to
get a single point. It’s okay, continue reading, you will understand.

2 Chapter 1. Introduction

http://www.blender.org
http://www.python.org

CHAPTER 2

Installation

Simply put, to use Aduct, you need to install it. The following guide should be able help you in getting Aduct. For
advanced users and more configuration, you are always welcome to grab the source code of Aduct and do literally
whatever you want.

2.1 Requirements

Aduct is written in Python and requires Python. Apart from that you need Gtk, nothing more. So we directly follow
the guidelines required to use Gtk.

• Python 3.5+ If not installed, get the latest version of Python.

• Gtk 3.0+ The latest version of Gtk is recommended. The instructions to install it are highlighted in the official
website.

• PyGObject PyGObject provides Python bindings to GI modules (that is Gtk and its friends). If this is your first
try with Gtk, you may have to install it. Directly install it using PIP.

2.2 Getting Aduct

After the requirements are satisfied, installing Aduct won’t be a trouble. The best way is to install it using PIP.

$ pip install Aduct

As already stated, for those not comfortable with PIP, you can always get the source code and do necessary things to
get Aduct on your PYTHONPATH.

3

http://www.python.org
http://www.gtk.org
https://pygobject.readthedocs.io/
https://pypi.org/project/PyGObject/

Aduct, Release 1.1.0

2.3 New to Gtk ?

It might be case, that you don’t even know what is Gtk and perhaps be wondering how to get started. The following is
a quotation from Wikipedia’s page for Gtk.

GTK (formerly GTK+ GIMP Toolkit) is a free and open-source cross-platform widget toolkit for creating
graphical user interfaces (GUIs). It is licensed under the terms of the GNU Lesser General Public License,
allowing both free and proprietary software to use it. Along with Qt, it is one of the most popular toolkits
for the Wayland and X11 windowing systems. (Source : Wikipedia)

Learning the basics of Gtk will be easy with Python. To get familiar with developing Gtk applications, please have a
look at the official docs.

4 Chapter 2. Installation

https://en.wikipedia.org/wiki/GTK
https://www.gtk.org/docs/language-bindings/python/

CHAPTER 3

Overview

Let us now learn how to design a flexible interface using Aduct. It isn’t any difficult, so let’s get started. An interface
designed with Aduct is backed up by three things; providers, views and elements. The following sections describe
them in an elaborate manner.

3.1 Aduct.Provider

Provider is an object that can produce widgets. They can be taken as a factory that can assemble and give you widgets
when required. The provider owns every information about the widget it produces, so it can easily produce duplicate
widgets and also control them as required. Apart from assembling widgets, they can also dissemble a widget when
required. A dissembling process ideally extracts information from a widget and then destroys it.

5

Aduct, Release 1.1.0

Widgets can however be stored (in memory), if making a widget is so tedious compared to storing them. So, you can
also reuse a widget and make a new one only when you run out of stock. The process of dissembling a widget is called
clearing. A widget produced by a provider is known as child. In fact, the word widget is rarely used and instead the
term child is used.

3.2 Aduct.Element

Element is an container that can hold the child produced by a provider. They are the front-end in an application, so any
sort of interaction happens via elements. An element has an action button. It is used to alter the child in the element,
like changing, removing, clearing a child. Action buttons are recommended, but can be avoided if you have any other
approach. On the side of an action button, you can also add widgets like quick tool buttons. Ideally you can attach
only one widget, so if you want to add multiple widgets, put them inside a container like grid or box. Elements can
not be directly attached to an interface, they need a container called views.

6 Chapter 3. Overview

Aduct, Release 1.1.0

3.3 Aduct.View

View is a container of widgets. Aduct comes with three basic views, that are enough for most of the use cases. New
views can also be made easily if they don’t satisfy your need. The three views are :

3.3.1 Aduct.Bin

A bin can contain only one child. The child can either be another view or element.

3.3.2 Aduct.Paned

A paned is a container that can hold two children, either in vertical or horizontal direction. Similar to a bin, paned can
hold either a view or an element. Paned contains a movable handle between its children, which can change the space
allocated to each child.

3.3.3 Aduct.Notebook

A notebook can contain an arbitrary number of children, but they all should be elements. In a notebook, only one child
is visible at a time and the visible child can be changed using the tabs located on an edge. Notebook also has action
buttons, attached at either side of tabs or at one side. They are optional, so can be avoided if not needed.

3.4 Framing an Application

Now we describe how to create a convenient interface using Aduct.

• Make all the basic things required to make the application, like collecting plugins, user data.

• From your plugins and own collection, make a list of providers which can produce child widgets.

• Design an interface that you and a lot of users find convenient. The interface designed should be using views
and elements, with children from providers.

• Then connect the elements, views with tweak functions. Tweak functions are those that can modify properties
of views and elements.

• Provide a way for the users to save and load interfaces using Aduct’s built-in functions.

The above points do not explain how they are done practically, so let’s get our hands wet in a short tutorial in next
chapter.

3.3. Aduct.View 7

Aduct, Release 1.1.0

8 Chapter 3. Overview

CHAPTER 4

Making an Application

No more theory, let us now get into the business of making applications. In this tutorial we will make a very basic
application that helps you in understanding the logics. We have divided the tutorial into simpler parts so it is easy to
follow.

Since the application should be easy, we will handle only a very few widgets of Gtk. The details of the widgets that
are used in our providers are given below :

• Gtk.Entry

An entry widget takes single line input from user. It can also be used to display text that can only be copied but
not modified. When the text in an entry is changed, it emits changed signal. To prevent editing the text of an
entry, we set its editable property to False.

• Gtk.FileChooserButton

To open, save, select files or folders we need a file chooser widget. After user selects a file in the file chooser
dialog, a file-set signal is emitted.

• Gtk.Grid

A grid allows packing widgets into a single widget in a tabular format. To attach a widget to grid, we use the
gird’s Gtk.Grid.attach() method.

• Gtk.Label

Text can be displayed using a label widget. In our demo application, we are using only basic features of a label,
that is just display text.

• Gtk.ModelButton

Menu is often a linear list of textual buttons. To break that rule and include other widgets in menu, we use
model buttons.

• Gtk.Popover

Popovers are used to display something for a short period of time. They are usually used for drop-down menus.

• Gtk.ScrolledWindow

If a widget is too large to be accommodated in given space, we use a scrolled window. This shows only the
portion of the widget that could be displayed and rest can be scrolled.

• Gtk.TextBuffer

9

https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Entry.html#Gtk.Entry
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/FileChooserButton.html#Gtk.FileChooserButton
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Grid.html#Gtk.Grid
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Label.html#Gtk.Label
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/ModelButton.html#Gtk.ModelButton
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Popover.html#Gtk.Popover
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/ScrolledWindow.html#Gtk.ScrolledWindow
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/TextBuffer.html#Gtk.TextBuffer

Aduct, Release 1.1.0

Text buffer is used to store the text for a text view widget. A single text buffer can be shared across multiple
text views.

• Gtk.TextView

To enable multi-line text compatibility a text view widget is used. Text view is a front-end and the text in it is
controlled using a text buffer. As in the case of label, we are not going to use the full power of a text view.

• Gtk.ToggleButton

A toggle button is like a switch, it can have two states active and inactive. A toggled signal is emitted if the
state of the button is changed.

• Gtk.Window

A window is the top-level widget that represents your application. We quit Gtk’s main loop when the main
window is destroyed.

So let’s get started.

4.1 Making Providers

Providers are the core part of our application. Because of the design philosophy of Aduct, every part of an application
behaves like a plugin. This makes an application modular in every way. To keep things simple, we make only three
providers.

• Provider A
It gives a text entry and a toggle button. The toggle button allows editing the entry.

• Provider B
It gives a text view and a file chooser button. The file chooser button opens the file for displaying.

• Provider C
It gives a label with text Hello World.

Note: If the code to make the first two providers are difficult, then copy the code for Provider C and change the text
for label, but the results will vary.

To make providers, we inherit Aduct.Provider. Then we add the required methods (please refer Aduct.
Provider for more details on required methods).

In Aduct, you will often see variables named child_dict. A child_dict is of the following format.

child_dict = {
"child": Gtk.Widget,
"child_name": str,
"icon": Gtk.Image,
"header_child": Gtk.Widget or None,
"provider": Aduct.Provider

}

The source code for our providers are as follows. If you are lazy to copy-paste, download it.

import gi
gi.require_version("Gtk", "3.0")
from gi.repository import Gtk, GObject

import Aduct

(continues on next page)

10 Chapter 4. Making an Application

https://lazka.github.io/pgi-docs/Gtk-3.0/classes/TextView.html#Gtk.TextView
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/ToggleButton.html#Gtk.ToggleButton
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Window.html#Gtk.Window

Aduct, Release 1.1.0

(continued from previous page)

class Provider_A(Aduct.Provider):

name = GObject.Property(type=str, default="Provider A", flags=GObject.ParamFlags.
→˓READABLE)

def __init__(self):

Aduct.Provider.__init__(self)
self.text = ""
self.toggles = []
self.entries = []
self.editable = False

def change_text(self, entry):

self.text = entry.get_text()
for entry in self.entries:

entry.set_text(self.text)

def clear_child(self, child_props):

self.entries.remove(child_props["child"])
self.toggles.remove(child_props["header_child"])
del child_props

def get_a_child(self, child_name):

entry = Gtk.Entry(margin=5, text=self.text, editable=self.editable)
entry.connect("changed", self.change_text)

icon = Gtk.Image.new_from_icon_name("terminal", 2)
Choose whatever icon you want

switch = Gtk.ToggleButton(
label="Allow Edit", hexpand=True, halign=2, active=self.editable

)
switch.connect("toggled", self.toggle_editable)

self.entries.append(entry)
self.toggles.append(switch)

child_props = {
"child_name": "Entry",
"child": entry,
"icon": icon,
"header_child": switch,

}
return child_props

def get_child_props(self, child_name, child, header_child):

props = {"child_name": child_name, "text": self.text, "editable": self.
→˓editable}

return props

(continues on next page)

4.1. Making Providers 11

Aduct, Release 1.1.0

(continued from previous page)

def get_child_from_props(self, props):

self.editable = props["editable"]
self.text = props["text"]

for toggle in self.toggles:
toggle.set_active(self.editable)

for entry in self.entries:
entry.set_editable(self.editable)
entry.set_text(self.text)

return self.get_a_child(props["child_name"])

def toggle_editable(self, toggle):

self.editable = toggle.get_active()
for toggle in self.toggles:

toggle.set_active(self.editable)
for entry in self.entries:

entry.set_editable(self.editable)

class Provider_B(Aduct.Provider):

name = GObject.Property(type=str, default="Provider B", flags=GObject.ParamFlags.
→˓READABLE)

def __init__(self):

Aduct.Provider.__init__(self)
self.file_choosers = []
self.buffer = Gtk.TextBuffer()
self.path = None

def clear_child(self, child_props):

self.file_choosers.remove(child_props["header_child"])
del child_props

def change_text_at_buffer(self, fp_but):

path = fp_but.get_filename()
self.path = path
fp = open(path)
text = fp.read()
self.buffer.set_text(text)
fp.close()

for fp_chooser in self.file_choosers:
fp_chooser.set_filename(self.path)

def get_a_child(self, child_name):

textview = Gtk.TextView(margin=5, buffer=self.buffer)
scrolled = Gtk.ScrolledWindow(expand=True)
scrolled.add(textview)

(continues on next page)

12 Chapter 4. Making an Application

Aduct, Release 1.1.0

(continued from previous page)

icon = Gtk.Image.new_from_icon_name("folder", 2)

fp_but = Gtk.FileChooserButton(title="Choose file", hexpand=True, halign=2)

if self.path:
fp_but.set_filename(self.path)

fp_but.connect("file-set", self.change_text_at_buffer)
self.file_choosers.append(fp_but)

child_props = {
"child_name": "TextView",
"child": scrolled,
"icon": icon,
"header_child": fp_but,

}
return child_props

def get_child_props(self, child_name, child, header_child):

props = {"child_name": child_name, "path": self.path}
return props

def get_child_from_props(self, props):

self.path = props["path"]
if self.path:

fp = open(self.path)
text = fp.read()
self.buffer.set_text(text)
fp.close()

for fp_chooser in self.file_choosers:
fp_chooser.set_filename(self.path)

return self.get_a_child(props["child_name"])

class Provider_C(Aduct.Provider):

name = GObject.Property(type=str, default="Provider C", flags=GObject.ParamFlags.
→˓READABLE)

def __init__(self):

Aduct.Provider.__init__(self)

def clear_child(self, child_props):

del child_props

def get_a_child(self, child_name):

label = Gtk.Label(margin=5, label="Hello world")

icon = Gtk.Image.new_from_icon_name("glade", 2)
child_props = {

(continues on next page)

4.1. Making Providers 13

Aduct, Release 1.1.0

(continued from previous page)

"child_name": "Label",
"child": label,
"icon": icon,
"header_child": None,

}
return child_props

def get_child_props(self, child_name, child, header_child):

props = {"child_name": child_name}
return props

def get_child_from_props(self, props):

return self.get_a_child(props["child_name"])

A = Provider_A()
B = Provider_B()
C = Provider_C()

We prefer keeping the above code in a separate file (could be named providers.py), because in practical situations
(while making real applications) it is better to isolate providers from the core application, this makes it easy to maintain.
The reason we imported Gtk from Aduct is not so crucial. It was done to reduce typing, also it makes sure that we are
using the same version of Gtk that Aduct is using.

4.2 Designing the Application

Now we have made providers, our next step is to frame the application. Open a new file (could be named app.py).
To allow widgets in the application, we should put a way for users to view available widgets and select the required.
This is done using action button of element and notebook. The convention is when users left-click an action button, it
should show widgets (from providers) and when they right-click, it should show options to modify the interface.

There are two suitable ways to show the users the widgets to select from. It could be a popup window. But pop-ups
are considered distracting. The second option is drop-down menu (also known as popover menu). Popovers are better
as they cover only a small area and are not as annoying as popup windows. We populate the menu with model buttons.

Before adding providers, we should also spend time in a kind of functions known as creator functions. As Aduct is an
interface to dynamically modify an interface, you need to be able to dynamically make Aduct widgets. So we make
small functions that, when called give the required widget. An advantage of such functions is that they can be used to
add custom changes to widgets like changing border spacing, connecting signals and automate other repeating tasks.
The first few lines of app.py is given below. (The complete file is also available for download.)

import Aduct
from Aduct import Gtk

from providers import A, B, C # providers from provider.py

last_widget = None # The last widget (element/notebook) where popover was shown.

def new_element():
element = Aduct.Element(margin=5)
element.connect("action-clicked", show_popover_element)

(continues on next page)

14 Chapter 4. Making an Application

Aduct, Release 1.1.0

(continued from previous page)

show_popover_element is a function to show the popover for an element.
return element

def new_bin():
bin_ = Aduct.Bin()
return bin_

def new_paned(orientation=0):
paned = Aduct.Paned(orientation=orientation)
return paned

def new_notebook():
notebook = Aduct.Notebook()
button = Gtk.Button()
icon = Gtk.Image.new_from_icon_name("list-add", 2)
button.add(icon)
notebook.set_action_button(button, 1)
notebook.connect("action-clicked", show_popover_notebook)
show_popover_notebook is a function like show_popover_element.
return notebook

The idea of the above code is simple. When action button of an element or notebook is clicked, it emits a signal and
popover is shown in return. The popover contains model buttons for various purposes, when they are clicked, they
need to know for which element or notebook they were clicked. To tackle this, when an action button is clicked, we
correspondingly set the value of last_widget to that widget. With that, let’s append the next lines of code.

def show_popover_element(ele, but, event):

global last_widget
last_widget = ele

if event == 1: # 1 -> left-click of mouse
prov_popover.set_relative_to(but)
prov_popover.popup()

elif event == 3: # 3 -> right-click of mouse
for modbs in tweaks.values():

for modb in modbs:
modb.set_sensitive(True)

tweak_popover.set_relative_to(but)
tweak_popover.popup()

def show_popover_notebook(nb, but, event):

global last_widget
last_widget = nb

if event == 1:
prov_popover.set_relative_to(but)
prov_popover.popup()

elif event == 3:
(continues on next page)

4.2. Designing the Application 15

Aduct, Release 1.1.0

(continued from previous page)

for modb in tweaks["Element"]:
modb.set_sensitive(False)

for modb in tweaks["Notebook"]:
modb.set_sensitive(False)

tweak_popover.set_relative_to(but)
tweak_popover.popup()

Both the above functions are same but the difference between them is that first one is for an element and second is for
a notebook. prov_popover is for displaying widgets from providers and tweak_popover is for showing options
to modify the interface. As per the convention mentioned earlier, we show prov_popover when users left-click and
tweak_popover when users right-click an action button. We will cover later why we are changing sensitivities of
model buttons.

Now let us make some more functions that can modify the interface.

def remove_element(wid):
global last_widget
Aduct.remove_element(last_widget, last_widget.get_parent())

def add_to_paned(wid, position):
global last_widget
element = new_element()
paned = new_paned()
if position == 0:

paned.set_orientation(0)
Aduct.add_to_paned(last_widget, element, paned, 1)

elif position == 1:
paned.set_orientation(0)
Aduct.add_to_paned(last_widget, element, paned, 2)

elif position == 2:
paned.set_orientation(1)
Aduct.add_to_paned(last_widget, element, paned, 1)

elif position == 3:
paned.set_orientation(1)
Aduct.add_to_paned(last_widget, element, paned, 2)

def add_to_notebook(wid, position):
global last_widget
notebook = new_notebook()
notebook.set_tab_pos(position)
Aduct.add_to_notebook(last_widget, notebook)

Please read Functions to know the details of the functions used from Aduct. Next we add more functions for changing
child at an element, saving and loading interfaces.

def change_child_at_element(wid, prov, child_name):
global last_widget
if last_widget.get_type() == "element":

Aduct.change_child_at_element(last_widget, prov, child_name)
elif last_widget.get_type() == "notebook":

element = new_element()
Aduct.change_child_at_element(element, prov, child_name)
Aduct.add_to_notebook(element, last_widget)
element.show_all()

(continues on next page)

16 Chapter 4. Making an Application

Aduct, Release 1.1.0

(continued from previous page)

def save_interface(wid):
from json import dump

with open("aduct.ui", "w") as fp:
ui_dict = Aduct.get_interface(top_level)
dump(ui_dict, fp, indent=2)

def load_interface(wid):
from json import load

with open("aduct.ui") as fp:
ui_dict = load(fp)
creator_maps = {

"type": {
"element": (new_element, (), {}),
"bin": (new_bin, (), {}),
"notebook": (new_notebook, (), {}),
"paned": (new_paned, (), {}),

}
}
init_maps = {

"provider": {"Provider A": A, "Provider B": B, "Provider C": C, None:
→˓None}

}
Aduct.set_interface(ui_dict, top_level, creator_maps, init_maps)

The first function does some straight-forward tasks. It changes a child at element when called from element. In case
it is called from a notebook, we make a new element, get a child from provider and add it to the element. Then we
append the element to the notebook.

The second function gets the interface; it is a dictionary with strings, numbers and None. So it can be dumped using
json in human-readable format. We are using a file named aduct.ui for saving and loading interfaces. top_level
(declared later) is the view or element from which the interface should be fetched. It is usually the root widget.

The third function surely deserves a mention. After completing this tutorial, you can run the script (app.py), try playing
with the interface. Then save the interface. After that open the file named aduct.ui, you will see a JSON-styled data
with keys like type, provider etc. Now when you ask Aduct to create the interface from the same file, it replaces all
the required values with objects (or widgets here). The convention is that key type states the type of Aduct widget and
provider states the name of provider.

The dictionaries whose name ends with maps, does the job of replacing strings or numbers with an object. They are
nested-dictionaries of depth two. It is like what key to replace? If found replace the value of that key with the value
from maps. For example, from init_maps we have the key provider. So first the set_interface function will
look for any key named provider in ui_dict. If found it will look at its value, say it is Provider A, now it will
go back to init_maps and look for the value of key Provider A in the dictionary which is the value of key named
provider. From the above it is provider A, then the function replaces the value Provider A in ui_dict with the actual
object; provider A. So you can consider it as a mapping of strings to objects.

The purpose of creator_maps and init_maps are pretty same. Their difference lies in values they are replacing.
init_maps maps to object already created, that is initialized objects, like providers, plugins, file objects. It is to re-
place object that are already available and should not created again. On the other hand, creator_maps, dynamically
creates objects as needed. It is for the purpose where each object has to be unique or can be created multiple times for
multiple usage. The values of creator_maps are of this order (function, args, kwargs). While replac-
ing strings with objects, the object is created by calling the function like this : object = function(*args,

4.2. Designing the Application 17

Aduct, Release 1.1.0

**kwargs).

Pretty simple as that, however if you are confused, remember them as mappings. That’s it.

The third function needs a root widget. It will remove whatever child it holds and replaces it with the children from
the JSON file. However it returns the old child for recovering data, something not so necessary in our application.

The finishing parts of our application is just connecting everything, creating a new window and adding a top level
view.

provs = [
(

A,
Gtk.ModelButton(text="Entry"),
"Entry",

), # Making a model-button for each provider.
(B, Gtk.ModelButton(text="TextView"), "TextView"),
(C, Gtk.ModelButton(text="Label"), "Label"),

]

prov_grid = Gtk.Grid() # A grid to store them

for y, (prov, modb, child_name) in enumerate(provs):
prov_grid.attach(modb, 0, y, 1, 1)
modb.connect("clicked", change_child_at_element, prov, child_name)

prov_popover = Gtk.PopoverMenu()
prov_popover.add(prov_grid)
prov_grid.show_all()

Pretty same as providers, but for tweak functions.
tweaks = {

"Element": (Gtk.ModelButton(text="Remove"),),
"Notebook": (

Gtk.ModelButton(text="Add to top notebook"),
Gtk.ModelButton(text="Add to side notebook"),

),
"Paned": (

Gtk.ModelButton(text="Split left"),
Gtk.ModelButton(text="Split right"),
Gtk.ModelButton(text="Split up"),
Gtk.ModelButton(text="Split down"),

),
"Interface": (

Gtk.ModelButton(text="Load interface"),
Gtk.ModelButton(text="Save interface"),

),
}

tweak_grid = Gtk.Grid()

for x, title in enumerate(tweaks):
label = Gtk.Label(label=title)
tweak_grid.attach(label, x, 0, 1, 1)
modbs = tweaks[title]
for y, modb in enumerate(modbs):

tweak_grid.attach(modb, x, y + 1, 1, 1)

tweak_popover = Gtk.PopoverMenu()
(continues on next page)

18 Chapter 4. Making an Application

Aduct, Release 1.1.0

(continued from previous page)

tweak_popover.add(tweak_grid)
tweak_grid.show_all()

def connect_tweaks():
Connecting model-buttons to required functions.
elem_modb = tweaks["Element"][0]
elem_modb.connect("clicked", remove_element)

top_nb_modb = tweaks["Notebook"][0]
top_nb_modb.connect("clicked", add_to_notebook, 2)
side_nb_modb = tweaks["Notebook"][1]
side_nb_modb.connect("clicked", add_to_notebook, 0)

l_paned_modb = tweaks["Paned"][0]
r_paned_modb = tweaks["Paned"][1]
u_paned_modb = tweaks["Paned"][2]
d_paned_modb = tweaks["Paned"][3]

0, 1, 2, 3 are integer values of Gtk.PositionType.
l_paned_modb.connect("clicked", add_to_paned, 0)
r_paned_modb.connect("clicked", add_to_paned, 1)
u_paned_modb.connect("clicked", add_to_paned, 2)
d_paned_modb.connect("clicked", add_to_paned, 3)

load_modb = tweaks["Interface"][0]
save_modb = tweaks["Interface"][1]
load_modb.connect("clicked", load_interface)
save_modb.connect("clicked", save_interface)

connect_tweaks()

top_level = new_bin()
element = new_element()
top_level.add_child(element) # Making a single element and adding it.

win = Gtk.Window(default_height=500, default_width=750)
win.add(top_level)
win.connect("destroy", Gtk.main_quit)
win.show_all()
Gtk.main()

Phew. . . we completed making the application! You might not have understood some parts, but still, run the appli-
cation (run app.py) and see how it looks. Well just an empty screen with an empty button, right? Click on the action
button of element and add new child to the element. Next try right clicking the action button to split it or add it to a
notebook. Have fun removing the views and adding new one. When you are comfortable with the interface, save the
interface and close the application. Now open it again and load the interface. You should see the interface you saved.

Let us discuss something we promised earlier. Run the application and add an element to notebook. Now right-click
the element’s action button and click on Add to side notebook, you should see an error in your terminal or console
that a Aduct notebook can only have a Aduct element as child. It is not a bug, it is a feature! Aduct notebook can
only attach a named child and the only named child in Aduct is element. So you will get error when you try to add a
child of irrelevant type to a notebook. This is the reason we changed the sensitivities of a few menu items. Because
we don’t want to allow users to do something not permitted. We could have made separate popovers for notebook and
element, but to avoid repeating codes with small difference, we omitted it. You might wonder why we didn’t change
sensitivities of menu items of popovers shown for elements inside a notebook, the answer is we want you to try!

4.2. Designing the Application 19

Aduct, Release 1.1.0

Note a few more things which might look absurd. When you remove an element from a paned, it collapses to a bin.
When you remove an element from notebook with three or more pages, nothing goes wrong. But when you remove an
element from a notebook with only two pages, the notebook drops to a bin. In case of a bin, when you try to remove
its child element, instead of removing, it only clears the element.

This also has some reasons behind it. A paned is meant to hold two child, so when you remove its one child, the
purpose of a paned is destroyed, so it becomes a bin. Similarly, a notebook is meant to hold a number of elements and
show only one of them at a time. A notebook with only page is against its purpose, so it becomes a bin. For bin, the
same logic is applied. A Aduct bin is, by convention, used as a top-level for holding other view. When you remove
the element from it, the complete interface link is broken and you get a blank space, where no kind of interaction is
possible. To avoid this, bin always clears the element instead of removing it.

However, if these behaviors are not acceptable to you, you are always free to create your own functions and use them.

While using the widgets like entry, text view in our application, you might have noticed that an entry is just a copy
of another entry, with same text and mode, synchronized between them. This is to symbolize that widgets with same
name are basically the same. But this is not enforced. It depends on the provider, it may produce a new widget or just
a copy.

So here we reach the end of tutorial. There are some lines, paragraphs or entire section that doesn’t even make any
sense to you. Feel free to discuss it with other developers to get help. Also if you think, the same matter could be
presented in a better manner, you are always welcome to suggest your edits.

At last, we would like to say, designing an application is like painting. Everyone has a brush and seven basic colors. It
depends on the painter how great he/she is going to make his/her art look. He/she may have a different ideology and
style, its unique and can’t be duplicated.

Same in case of an application, Aduct is like brush and paint, it lies in your method, how well you are going to utilize
it. Sometimes it could come out worse, where you should surely retry. Sometimes it could come great, where you
should share the method with others (including us!). Also beauty lies in the eyes of the viewer, not in the painting. . .
cheers!

20 Chapter 4. Making an Application

CHAPTER 5

API Reference

5.1 Classes

5.1.1 Element

Element represents an individual block. It can hold a widget and handle operations with it. While setting and removing,
a child_dict named dictionary is taken and returned. The format of child_dict is as follows

child_dict = {
"child": Gtk.Widget,
"child_name": str,
"icon": Gtk.Image,
"header_child": Gtk.Widget or None,
"provider": Aduct.Provider

}

Here only header_child key is optional.

class Aduct.Element.Element(child_dict=None, use_action_button=True, pack_type=0, **kwargs)
Makes an element based on given properties. Its CSS name is aduct-element.

Parameters

• child_dict (dict) – A dictionary object containing properties of child. Given a valid
dictionary, the child is added to self while initializing. It is None, when not given.

• use_action_button (bool) – States whether to use an action button. Default is True.

• pack_type (Gtk.PackType) – Specfies the position of action button. It can be
an integer of value either 0 or 1, which represents Gtk.PackType.START or Gtk.
PackType.END respectively. The default value is Gtk.PackType.START.

• **kwargs – The values to be passed to Gtk.Grid, from which Element is derived.

action_button
Action button that is used to handle interactions with user. Its default name is aduct-element-action_button.

21

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://lazka.github.io/pgi-docs/Gtk-3.0/enums.html#Gtk.PackType
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Grid.html#Gtk.Grid

Aduct, Release 1.1.0

Type Gtk.Button

child_name
The name of child held by self.

Type str

pack_type
The position of action button in self.

Type Gtk.PackType

provider
The provider that produced the child of self.

Type Provider

Signals

action-clicked Emitted with an integer when action button of self is clicked. The integer is 1, 2, 3 for
LMB, MMB, RMB respectively.

child-added Emitted when a child is added to self.

child-cleared Emitted when the child of self is cleared.

child-removed Emitted when the child of self is removed.

Note: Incase having use_action_button as False, an action button is still created, but is not attached
to the self.

clear_child()
Clears the child at self. After clearing, child-cleared signal is emitted.

disable_action_button()
Removes the action button of self. Nothing is done if it is already disabled.

enable_action_button()
Adds the action button of self. Nothing is done if it is already enabled.

get_child()
Gets the child held by self.

Returns The child of self or None if self has no child.

Return type Gtk.Widget or None

get_child_name()
Gets the name of child held by self.

Returns The child name of self or None if self has no child.

Return type str or None

get_header_child()
Gets the child packed at the header of self.

Returns The header child of self or None if self has no header child.

Return type Gtk.Widget or None

get_icon()
Gets the icon representing child held by self.

Returns The icon of action_button or None if self has no icon for child.

22 Chapter 5. API Reference

https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Button.html#Gtk.Button
https://docs.python.org/3/library/stdtypes.html#str
https://lazka.github.io/pgi-docs/Gtk-3.0/enums.html#Gtk.PackType
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Widget.html#Gtk.Widget
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Widget.html#Gtk.Widget
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Aduct, Release 1.1.0

Return type Gtk.Image or None

get_props()
Gets the properties of child held by self.

Returns The dictionary that can be later used to build the same interface.

Return type dict

get_provider()
Gets the provider for child held by self.

Returns The provider of self or None if self has no child.

Return type Provider or None

get_type()
Gets the type of self.

Returns The name of provider.

Return type str

remove_child()
Removes the child held by self.

By removing a child, all its associated properties like icon, header child are also removed. A
child-removed signal is emitted by self after removal.

Raises ValueError – Raised when self has no child.

Returns A dictionary with child properties.

Return type dict

set_child(child_dict)
Sets the child in self from given properties.

If self already has a child, then its cleared before adding this new child. A child-added signal is
emitted after addition.

Parameters child_dict (dict) – A valid dictionary with properties of child.

set_child_name(child_name)
Sets the name of child held by self.

Parameters child_name (str) – The new name of child.

set_from_props(props)
Sets the interface of self from given properties.

If self already has a child, then its cleared before adding this new child.

Parameters props (dict) – The dictionary from which properties are set.

set_header_child(header_child)
Sets the header child of self.

Parameters header_child (Gtk.Widget) – The new header child of self.

set_icon(icon)
Sets the icon of child held by self.

Parameters icon (Gtk.Image) – The new icon of child.

set_provider(provider)
Sets the provider of child held by self.

5.1. Classes 23

https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Image.html#Gtk.Image
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Widget.html#Gtk.Widget
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Image.html#Gtk.Image

Aduct, Release 1.1.0

Parameters provider (Provider) – The new provider of child.

type
Used by autodoc_mock_imports.

5.1.2 Views

Bin

Bin is a view that can hold only one child. The child can be either an View or Element.

class Aduct.Views.Bin.Bin(**kwargs)
Makes a bin based on given properties. Its CSS name is aduct-bin.

Parameters **kwargs – The keyword arguments to be passed to Gtk.Bin from which Bin is
made.

add_child(child)
Adds the child self.

Parameters child (View or Element) – The child to be added to self.

Raises ValueError – Raised when self already has a child.

get_props()
Gets the interface properties.

Returns A dictionary with interface properties.

Return type dict

remove_child(child)
Removes the given child.

Parameters child (View or Element) – The child which has to be removed from self.

Raises ValueError – Raised when child is not present in self.

replace_child(old_child, new_child)
Replaces the existing child with a new child.

Parameters

• old_child (View or Element) – The child present in self which has to be replaced.

• new_child (View or Element) – The child that will replace the given old_child
of self.

set_from_props(props)
Sets the interface from given properties.

Parameters props (dict) – The dictionary containig properties of interface.

type
Used by autodoc_mock_imports.

Notebook

Notebook is a view that can hold only children of type Element. With this restriction, there is no limitation in
number of children it can hold.

24 Chapter 5. API Reference

https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Bin.html#Gtk.Bin
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict

Aduct, Release 1.1.0

class Aduct.Views.Notebook.Notebook(**kwargs)
Makes a notebook based on given properties. Its CSS name is aduct-notebook.

Parameters

• **kwargs – The values to be passed to Gtk.Notebook from which Notebook is
made.

• Signals –

action-clicked Emitted with an integer when action button of self is clicked. The integer
is 1, 2, 3 for LMB, MMB, RMB respectively.

add_child(child, position=-1)
Adds the child self.

Parameters child (Element) – The child to be added to self.

Raises TypeError – Raised when child is not a Element.

change_child_label(child)
Changes the tab label for existing child.

The text for new label is taken as the name of child of child (Aduct.Element.child_name). It is
set to No child when child has no name for its child (Aduct.Element.child_name is None).

Parameters child (Element) – The child whose tab label has to be changed.

get_action_button(pack_type)
Gets the action button at given position.

Parameters pack_type (Gtk.PackType) – The position from which action button has to
retrieved.

Returns The action button of self or None if self has no action button.

Return type Gtk.Button or None

get_number_of_action_buttons()
Gets the number of action buttons present.

Returns The number of action buttons.

Return type int

get_props()
Gets the interface properties.

Returns A dictionary with interface properties.

Return type dict

get_tab(child)
Gets a tab label for child.

The text for new label is taken as the name of child of child (Aduct.Element.child_name). It
is set to No child when child has no name for its child (Aduct.Element.child_name is None).
Based on position of tabs in self, the orientation of text in the label also varies.

Parameters child (Element) – The child which requires a tab label.

Returns Label with text determined from child.

Return type Gtk.Label

remove_child(child)
Removes the given child from self.

5.1. Classes 25

https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Notebook.html#Gtk.Notebook
https://docs.python.org/3/library/exceptions.html#TypeError
https://lazka.github.io/pgi-docs/Gtk-3.0/enums.html#Gtk.PackType
https://docs.python.org/3/library/constants.html#None
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Button.html#Gtk.Button
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Label.html#Gtk.Label

Aduct, Release 1.1.0

Parameters child (Element) – The child which has to be removed from self.

Raises ValueError – Raised when child is not present in self.

replace_child(old_child, new_child)
Replaces the existing child with a new child.

Parameters

• old_child (Element) – The child present in self which has to be replaced.

• new_child (Element) – The child that will replace the given existing child of self.

Raises TypeError – Raised when new_child is not a Element.

set_action_button(action_button, pack_type)
Sets the action button to notebook.

Parameters

• action_button (Gtk.Button) – The button to be added to notebook. It need not be
a Gtk.Button actually, it could be any widget that can handle button-press-event.

• pack_type (Gtk.PackType) – The position of the action button.

set_from_props(props)
Sets the interface from given properties.

Parameters props (dict) – The dictionary containig properties of interface.

Raises ValueError – Raised when there is a mismatch of number of action buttons in prop-
erties and self.

type
Used by autodoc_mock_imports.

Paned

Paned is a view that can hold two children. The two children can either be View or Element.

class Aduct.Views.Paned.Paned(**kwargs)
Makes a paned based on given properties. Its default name is aduct-paned

Parameters **kwargs – The keyword arguments to be passed to Gtk.Paned from which
Paned is made.

add_child(child, position=0)
Adds the child to paned.

When position is 1 or 2, child is added at panel 1 or 2 of self respectively. When it is 0, child is
added to the first available panel. When it is neither of specified values, nothing is done.

Parameters

• child (View or Element) – The child to be added to self.

• position (int) – The panel at which the child has to be added. position can be 0
or 1 or 2, with default value being 0.

Raises ValueError – Raised when self already has a child.

get_props()
Gets the interface properties.

Returns A dictionary with interface properties.

26 Chapter 5. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Button.html#Gtk.Button
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Button.html#Gtk.Button
https://lazka.github.io/pgi-docs/Gtk-3.0/enums.html#Gtk.PackType
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Paned.html#Gtk.Paned
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

Aduct, Release 1.1.0

Return type dict

remove_child(child)
Removes the given child from self.

Parameters child (View or Element) – The child which has to be removed from self.

Raises ValueError – Raised when child is not present in self.

replace_child(old_child, new_child)
Replaces the existing child with a new child.

Parameters

• old_child (View or Element) – The child present in self which has to be replaced.

• new_child (View or Element) – The child that will replace the given existing child
of self.

Raises ValueError – Raised when old_child is not in self.

set_from_props(props)
Sets the interface from given properties.

Parameters props (dict) – The dictionary containig properties of interface.

type
Used by autodoc_mock_imports.

View

View can hold children of type Element. In some case, there is a restriction on number of children it can hold.

class Aduct.Views.View.View(**kwargs)
This an abstract class, that gives an idea of methods a View must have. Unless otherwise stated, all the
description of methods are generalised expected behavior of View . Depending upon the nature of view, the
type of child it can hold also varies.

add_child(child)
Adds the child self.

Parameters child (View or Element) – The child to be added to self.

Raises

• ValueError – Raised when there is insufficient information to add child to self.

• TypeError – Raised when child is of invalid type.

Note: When there is a lack of information to add child, self may try its best to add child in suitable
position.

get_props()
Gets the interface properties.

Returns A dictionary with interface properties.

Return type dict

get_type()
Gets the interface properties.

Returns A dictionary with interface properties.

5.1. Classes 27

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict

Aduct, Release 1.1.0

Return type dict

remove_child(child)
Removes the given child.

Parameters child (View or Element) – The child which has to be removed from self.

Raises ValueError – Raises when child is not present in self.

replace_child(old_child, new_child)
Replaces the existing child with new child.

Parameters

• old_child (View or Element) – The child present in self which has to be replaced.

• new_child (View or Element) – The child that will replace old_child of self.

set_from_props(props)
Sets the interface from given properties.

Parameters props (dict) – The dictionary containig properties of interface.

5.1.3 Provider

Provider acts as a producer of widgets that are placed as child in Element.

class Aduct.Provider.Provider(*args, **kwargs)
This a template that gives an idea of methods a Provider must have. Unless otherwise stated, all the descrip-
tion of methods are generalised expected behavior of a Provider.

clear_child(child_dict)
Clears the given child.

Parameters child_dict (dict) – A dictionary with properties of the child.

get_a_child(child_name)
Gets a child with given name.

Parameters child_name (str) – The name of child to be retrieved.

Returns A dictionary with properties of child.

Return type dict

get_child_from_props(props)
Gets a child based on given interface properties.

Parameters props (dict) – The interface properties for child.

Returns A dictionary with properties of child.

Return type dict

get_child_props(child_name, child, header_child)
Gets the interface properties from given values.

Parameters

• child_name (str) – The name of child.

• child (Gtk.Widget) – The child produced by self.

• header_child (Gtk.Widget) – The header child produced by self.

Returns A dictionary with interface properties of child.

28 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Widget.html#Gtk.Widget
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Widget.html#Gtk.Widget

Aduct, Release 1.1.0

Return type dict

get_name()
Gets the name of the provider.

Returns The name of provider.

Return type str

5.2 Functions

Aduct.add_to_notebook(element, notebook, position=-1)
Adds an element to the notebook at given position.

When the given element is already a child of some container, the function removes it from the parent and adds
the notebook to parent. Then the orphan element is added to notebook at position.

Parameters

• element (Element) – The element to be added to notebook.

• notebook (Notebook) – The notebook to which element has to be added

• position (int) – The position at which element has to be inserted. When not pro-
vided, it takes up value of -1, which inserts the element as last page.

Raises TypeError – When given element is not a Element.

Aduct.add_to_paned(child1, child2, paned, position)
Adds the children to given paned determined by position.

The main child child1 is added at first panel if position is 1 or second panel if position is 2. With
respect to position of child1, child2 is added at the complement panel. When position is neither 1 nor
2, nothing is done. If child1 is already a child of parent, it is removed from the parent and paned is added
back in its position. Then, the orphans child1 and child2 are added at requred places.

Parameters

• child1 (Gtk.Widget) – The main child which has to be added at given position.

• child2 (Gtk.Widget) – The other child which has to be added at the complement of
given position. It has to be an orphan.

• paned (Paned) – The paned to which the children has to be added.

• position (int) – An integer value that is either 1 or 2. The complement of 1 is 2 and
vice-versa.

Aduct.add_to_view(child, view)
Adds a child to the view.

If child is not an orphan, it is removed from its parent and view is added back in its place. Then child is
added to view.

Parameters

• child (Gtk.Widget or Aduct.Element.Element) – The child that has to be added to
view. It has to be an orphan.

• view (View) – The view to which child has to be added.

5.2. Functions 29

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Widget.html#Gtk.Widget
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Widget.html#Gtk.Widget
https://docs.python.org/3/library/functions.html#int
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Widget.html#Gtk.Widget

Aduct, Release 1.1.0

Warning: This function is given as a fall-back case and should never be used blindly without knowing the
properties of child and view. When the view already has a child or requires more information about
adding it, exceptions are raised. Still, the view may try its best to add the child at the possible place, only
when it can.

Incase of view being a Notebook, it appends the child to the last position. But it requires child to
be a Element. So at either case, you still have limitations that may end up in a weird result. For the same
reasons, child has to be an orphan.

Aduct.change_child_at_element(element, provider, child_name)
Changes the child at given element with a child of given name provided by provider.

The previous child at element is cleared, after which the new child is added.

Parameters

• element (Element) – The element whose child has to be changed.

• provider (Provider) – The provider that acts as source of child.

• child_name (str) – The name of child to be added to element.

Aduct.get_interface(top_level)
Gets the interface starting from the given top level.

Parameters top_level (View) – A view which acts as the root widget.

Returns A dictionary with properties to build interface.

Return type dict

Aduct.remove_element(element, view)
Removes the given element from view.

When view is a Bin, it clears element. For other types of views, it removes element. Then, if the number
of children in view is one, it replaces view with the other child of view.

Parameters

• element (Element) – The element to be removed.

• view (View) – The view from which element has to be removed.

Aduct.replace_child(view, child1, child2)
Replaces the given child of a view with another child.

Parameters

• view (View) – The view whose child has to be replaced.

• child1 (Gtk.Widget) – The child of given view which has to be replaced.

• child2 (Gtk.Widget) – The child which replaces child1 in view.

Raises TypeError – Raised when the given view is not a View

Aduct.set_interface(interface_dict, top_level, creator_maps, init_maps)
Sets the interface starting from given the top level.

Parameters

• interface_dict (dict) – A dictionary that can be used to set interface.

• top_level (View) – The root widget from which the interface has to be set.

30 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Widget.html#Gtk.Widget
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Widget.html#Gtk.Widget
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict

Aduct, Release 1.1.0

• creator_maps (dict) – A dictionary of format {key: (func, args,
kwargs)}, that is used to create the required object. The object is then created using
func(*args, **kwargs) and is substitued as value in interface_dict which
has key key.

• init_maps (dict) – A dictionary of format {key: object} already initialized ob-
jects. The occurences of key in inerface_dict is then replaced with object.

Returns The widget that was previous child of top_level, None if top_level has no child.

Return type Gtk.Widget

5.2. Functions 31

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://lazka.github.io/pgi-docs/Gtk-3.0/classes/Widget.html#Gtk.Widget

Aduct, Release 1.1.0

32 Chapter 5. API Reference

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

33

Aduct, Release 1.1.0

34 Chapter 6. Indices and tables

Python Module Index

a
Aduct, 29
Aduct.Element, 21
Aduct.Provider, 28
Aduct.Views.Bin, 24
Aduct.Views.Notebook, 24
Aduct.Views.Paned, 26
Aduct.Views.View, 27

35

Aduct, Release 1.1.0

36 Python Module Index

Index

A
action_button (Aduct.Element.Element attribute),

21
add_child() (Aduct.Views.Bin.Bin method), 24
add_child() (Aduct.Views.Notebook.Notebook

method), 25
add_child() (Aduct.Views.Paned.Paned method), 26
add_child() (Aduct.Views.View.View method), 27
add_to_notebook() (in module Aduct), 29
add_to_paned() (in module Aduct), 29
add_to_view() (in module Aduct), 29
Aduct (module), 29
Aduct.Element (module), 21
Aduct.Provider (module), 28
Aduct.Views.Bin (module), 24
Aduct.Views.Notebook (module), 24
Aduct.Views.Paned (module), 26
Aduct.Views.View (module), 27

B
Bin (class in Aduct.Views.Bin), 24

C
change_child_at_element() (in module Aduct),

30
change_child_label()

(Aduct.Views.Notebook.Notebook method),
25

child_name (Aduct.Element.Element attribute), 22
clear_child() (Aduct.Element.Element method), 22
clear_child() (Aduct.Provider.Provider method),

28

D
disable_action_button()

(Aduct.Element.Element method), 22

E
Element (class in Aduct.Element), 21

enable_action_button()
(Aduct.Element.Element method), 22

G
get_a_child() (Aduct.Provider.Provider method),

28
get_action_button()

(Aduct.Views.Notebook.Notebook method),
25

get_child() (Aduct.Element.Element method), 22
get_child_from_props()

(Aduct.Provider.Provider method), 28
get_child_name() (Aduct.Element.Element

method), 22
get_child_props() (Aduct.Provider.Provider

method), 28
get_header_child() (Aduct.Element.Element

method), 22
get_icon() (Aduct.Element.Element method), 22
get_interface() (in module Aduct), 30
get_name() (Aduct.Provider.Provider method), 29
get_number_of_action_buttons()

(Aduct.Views.Notebook.Notebook method),
25

get_props() (Aduct.Element.Element method), 23
get_props() (Aduct.Views.Bin.Bin method), 24
get_props() (Aduct.Views.Notebook.Notebook

method), 25
get_props() (Aduct.Views.Paned.Paned method), 26
get_props() (Aduct.Views.View.View method), 27
get_provider() (Aduct.Element.Element method),

23
get_tab() (Aduct.Views.Notebook.Notebook method),

25
get_type() (Aduct.Element.Element method), 23
get_type() (Aduct.Views.View.View method), 27

N
Notebook (class in Aduct.Views.Notebook), 24

37

Aduct, Release 1.1.0

P
pack_type (Aduct.Element.Element attribute), 22
Paned (class in Aduct.Views.Paned), 26
provider (Aduct.Element.Element attribute), 22
Provider (class in Aduct.Provider), 28

R
remove_child() (Aduct.Element.Element method),

23
remove_child() (Aduct.Views.Bin.Bin method), 24
remove_child() (Aduct.Views.Notebook.Notebook

method), 25
remove_child() (Aduct.Views.Paned.Paned

method), 27
remove_child() (Aduct.Views.View.View method),

28
remove_element() (in module Aduct), 30
replace_child() (Aduct.Views.Bin.Bin method), 24
replace_child() (Aduct.Views.Notebook.Notebook

method), 26
replace_child() (Aduct.Views.Paned.Paned

method), 27
replace_child() (Aduct.Views.View.View method),

28
replace_child() (in module Aduct), 30

S
set_action_button()

(Aduct.Views.Notebook.Notebook method),
26

set_child() (Aduct.Element.Element method), 23
set_child_name() (Aduct.Element.Element

method), 23
set_from_props() (Aduct.Element.Element

method), 23
set_from_props() (Aduct.Views.Bin.Bin method),

24
set_from_props() (Aduct.Views.Notebook.Notebook

method), 26
set_from_props() (Aduct.Views.Paned.Paned

method), 27
set_from_props() (Aduct.Views.View.View

method), 28
set_header_child() (Aduct.Element.Element

method), 23
set_icon() (Aduct.Element.Element method), 23
set_interface() (in module Aduct), 30
set_provider() (Aduct.Element.Element method),

23
Signals (Aduct.Element.Element attribute), 22

T
type (Aduct.Element.Element attribute), 24

type (Aduct.Views.Bin.Bin attribute), 24
type (Aduct.Views.Notebook.Notebook attribute), 26
type (Aduct.Views.Paned.Paned attribute), 27

V
View (class in Aduct.Views.View), 27

38 Index

	Introduction
	The Need
	A Solution
	To The Point

	Installation
	Requirements
	Getting Aduct
	New to Gtk ?

	Overview
	Aduct.Provider
	Aduct.Element
	Aduct.View
	Framing an Application

	Making an Application
	Making Providers
	Designing the Application

	API Reference
	Classes
	Functions

	Indices and tables
	Python Module Index
	Index

